Addition | The different stages | Examples | |---|--| | Stage 1 Counting sets of objects | | | Stage 2 Combining two sets of objects into one group and counting practically. | For 5 + 3 the children may get 5 objects, and then 3 more and count how many altogether. | | Stage 3 Drawing dots - informal jottings. Then counting how many altogether. | 3 + 5 = 8
••• + •••• | | Stage 4 Counting on, on a number line with numbers on it. | 5 + 3 = 8
1 2 3 4 5 6 7 8 9 10 | | Stage 5 Steps in addition can be recorded on a number line. The steps often bridge through a multiple of 10. | 7 + 8 = 15
+3
+5
7 10 15 | | Partition the smaller numbers into tens and ones. Add on the tens. Add on the ones. | 37 + 28 = 65
+20 +5 +3
37 57 62 65 | ## **Addition** | The different stages | Examples | |---|--| | Stage 6 Partitioned numbers are then written under one another. | $ \begin{array}{r} 87 & 80 + 7 \\ + \underline{28} & \underline{20 + 8} \\ \hline 100 + 15 = 115 \end{array} $ | | Stage 7 Write the numbers in columns. Add the tens first. | 87
+ <u>28</u>
100
<u>15</u>
115 | | Adding the ones first. | 87
+ 28
15
100
115 | | Stage 8 This then becomes the shorter method where numbers get carried into the next column. | 87
+ 28
115 | | Stage 9 Moving to adding three two digit numbers, two three digit numbers and numbers with amounts of digits. | 249
+ 96
345 | ## **Subtraction** | The different stages | Examples | |--|--| | Stage 1 Practically get a group of objects together and then take some away. | | | Stage 2 Jottings - draw a set of marks, and then cross some out. | 12 - 5 = 7
英英英英英 ◆◆◆◆◆◆ | | Stage 3 Count back on a number line with numbers already on it. | $12 - 3 = 9$ $1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 10 \mid 11 \mid 12 \mid 13 \mid 14 \mid 15 \mid 16 \mid 17 \mid 18 \mid 19 \mid 20$ | | Stage 4 Using a number line. Work by counting back. | 73 - 39 = 34 -5 -30 -30 -31 -33 -33 -33 | | Also work out the difference by counting on. | Work out the difference between 47 and $86 = 39$ $+3 +36$ $47 50 86$ | ## **Subtraction** | The different stages | Examples | |---|--| | Stage 5 Partitioned numbers are written under one another. This is how we start introducing the column subtraction method. | 77 - 25 = 7 | | Stage 6 (Replace with 2 digit numbers) These show the two steps that lead lead to the shortened version of the column subtraction method. Always start with the units number. | $73 - 26 =$ $70 + 3 \longrightarrow 20 + 6$ $-20 + 6 \longrightarrow 40 + 7$ $-26 \longrightarrow 47$ $-26 \longrightarrow 47$ | | Stage 7 (Replace with 3 digit numbers) These show the two steps that lead lead to the shortened version of the column subtraction method. Always start with the units number. | $652 - 475 =$ $600 + 50 + 2$ $- 400 + 70 + 5$ 500 $- 400 + 50 + 2$ $- 400 + 70 + 5$ $100 + 70 + 7$ $5 \frac{14}{5} \frac{12}{2}$ $- 4 7 5$ $1 7 7$ | | Stage 8 (Replace with 4 digit numbers including 0) | 5000 900 100 5 9 10
6000 + 000 + 00 + 9 6 0 0 9
- 2000 + 100 + 20 + 3
3000 + 800 + 80 + 6 3 8 8 6 | ## Multiplication **Year 2** 2 times table 5 times table 10 times table Within this teach how to know facts i.e. Year 3 3 times table 6×3 is 5×3 and then 1×3 4 times table 9×3 is 10×3 and then take away 3 5 times table6 times table10 times table Year 4 Derive and recall multiplication facts for all tables up to 10 x 10 | The different stages | Examples | |--|--| | Stage 1 Counting practically in repeated groups/patterns | | | Stage 2
Grouping | 4 x 2 = 8 | | Stage 3
Arrays | $4 \times 2 = 8$ or $2 \times 4 = 8$ | | Stage 4 Repeated addition | 5×3 is $5 + 5 + 5 = 15$ or $3 \text{ lots of } 5$ | | Repeated addition can be shown easily on a number line. | 5 5 5 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ## Multiplication | The different stages | Examples | |---|--| | Stage 5 Partitioning | $14 \times 6 =$ $10 \times 6 = 60 4 \times 6 = 24$ $60 + 24 = 84$ | | Stage 6 The grid method. Place the number with the most digits in the left-hand column so that it is easier to add the answers of each part of the multiplication together. | 37 x 8 = x 8 30 240 7 56 296 | | Stage 7 Long multiplication. The next step is to show the method of recording in a column format, but showing the working. This links to the grid method above. Children should describe what they do by | | | saying the actual values of the digits in the column. Eg. The first step in 37 x 8 is 'thirty multiplied by eight', not 'three times eight.' | 37 x 8 240 This is the slightly 56 shorter version. 296 | | Stage 8 Short multiplication. The next step involves adding 240 and 56 mentally with only the 5 in the 56 recorded. | 37
x 8
296
5 | ## Multiplication | The different stages | Examples | |--|---| | Stage 9 | 47 x 23 | | Multiplying two, two digit numbers. | X | | This follows the same steps as the first grid method but for 2 digit | 40 800 120 920 | | numbers. | 7 140 21 161 | | | 1081 | | Stage 10 | 47 x 23 is approximately 50 x 20 is 1000 | | The amount of recording is reduced but children still need to follow each step of the grid method. | $ \begin{array}{r} 47 \\ x 23 \\ \hline 140 \\ 800 \\ 21 \\ \hline 120 \\ \hline 1081 \\ \end{array} $ $ \begin{array}{r} 20 \times 7 = 140 \\ 20 \times 40 = 800 \\ 3 \times 7 = 21 \\ 3 \times 40 = 120 \\ \hline 1081 $ | | The amount of recording is reduced more. | 47 x 23 is approximately 50 x 20 is 1000 | | | 47
x 23
940
141
1081 | #### Division #### Deriving and recalling division facts | Year 3 | Year 4 | |--------|--------| | | Year 3 | | 2 times table | 3 times table | Derive and recall all | |----------------|---------------|------------------------| | 5 times table | 4 times table | division facts for all | | 10 times table | 6 times table | tables up to 10 x 10 | ### The different stages ### Examples #### Stage 1 Children will develop their understanding of division and use jottings to support calculation. ### Stage 2 Grouping ### Stage 3 Arrays ### Stage 4 Repeated addition Repeated addition can be shown easily on a number line. $8 \div 2$ #### Sharing equally 8 sweets shared between 2 people, how many do they each get? #### Grouping or repeated addition There are 8 sweets, how many people can have 2 sweets each? #### Arrays can also be used. ### Division | The different stages | Examples | |--|---| | Stage 2 Children should also move onto calculations involving remainders through repeated subtraction. | $13 \div 3 = 4r1$ $0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 10 \mid 11 \mid 12 \mid 13 \mid 14$ | | Stage 3 Children will develop their use of repeated subtraction to be able to subtract multiples of the divisor. Initially this should be multiples of 10, 5, 2 and 1 - numbers with which the children are more familiar. | $22 \div 5 = 4r2$ 22 ÷ 5 = 4r2 2 7 12 17 22 | | Stage 4 Moving onto: | $ 27 \div 5 = 5r2 $ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$ | | Stage 5 Tens Ones ÷ Ones The vertical method. (Also known as chunking) | $72 \div 3 = 3) 72$ $- 30 (10 \times 3)$ 42 $- 30 (10 \times 3)$ 12 $- 6 (2 \times 3)$ $- 6 (2 \times 3) 10 + 10 + 2 + 2$ $= 24$ | ### Division | The different stages | Examples | |---|---| | Stage 6 Hundreds Tens Ones ÷ Ones Introduce subtracting larger multiples of ten. This is called chunking. | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | Stage 7 Long division Hundreds Tens Ones ÷ Ones | How many packs of 36 can we make from 828 biscuits? Start by multiplying 36 by multiples of 10 to get an estimate. As 36 x 20 is 720 and 36 x 30 is 1080 so we know it is between 20 and 30 packs. We start by subtracting 720 from 828. 36) 828 $ \begin{array}{r} $ | These are the calculation strategies used by most UK primary schools for maths. They are in stages rather than age groups as children develop mathematically at different ages. To establish which stage your child is working on, you can either ask your child's teacher or simply ask your child to carry out a related activity, for example by adding two numbers together. Just because your child is on a certain stage for one operation does not mean they will be on the same stage for others. When your child is really confident with a stage then move them forward and start working on the next stage.